5 resultados para TRANSCRANIAL ULTRASOUND

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunicación presentada en el VII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes, SNRFAI, Barcelona, abril 1997.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast, simple and environmentally friendly ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) procedure has been developed to preconcentrate eight cyclic and linear siloxanes from wastewater samples prior to quantification by gas chromatography-mass spectrometry (GC-MS). A two-stage multivariate optimization approach has been developed employing a Plackett-Burman design for screening and selecting the significant factors involved in the USA-DLLME procedure, which was later optimized by means of a circumscribed central composite design. The optimum conditions were: extractant solvent volume, 13 µL; solvent type, chlorobenzene; sample volume, 13 mL; centrifugation speed, 2300 rpm; centrifugation time, 5 min; and sonication time, 2 min. Under the optimized experimental conditions the method gave levels of repeatability with coefficients of variation between 10 and 24% (n=7). Limits of detection were between 0.002 and 1.4 µg L−1. Calculated calibration curves gave high levels of linearity with correlation coefficient values between 0.991 and 0.9997. Finally, the proposed method was applied for the analysis of wastewater samples. Relative recovery values ranged between 71–116% showing that the matrix had a negligible effect upon extraction. To our knowledge, this is the first time that combines LLME and GC-MS for the analysis of methylsiloxanes in wastewater samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High intensity ultrasound can be used for the production of novel nanomaterials, including metal oxides. According to previous works in this field, the most notable effects are consequence of acoustic cavitation. In this context, we have studied the preparation of different materials in the presence of ultrasound, including N-doped TiO2 nanopowder, NiTiO3 nanorods and MnOx thin films. Ultrasound did not show a significant effect in all the cases. Exclusively for NiTiO3 nanorods a reduction of the final particle size occurs upon ultrasonic irradiation. From these results, it can be concluded that the ultrasound irradiation does not always play a key role during the synthesis of metal oxides. The effects seem to be particularly relevant in those cases where mass transport is highly hindered and in those procedures that require the rupture of nanoparticle aggregates to obtain a homogenous dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.